Patch Processing for Relational Learning Vector Quantization

نویسندگان

  • Xibin Zhu
  • Frank-Michael Schleif
  • Barbara Hammer
چکیده

Recently, an extension of popular learning vector quantization (LVQ) to general dissimilarity data has been proposed, relational generalized LVQ (RGLVQ) [10, 9]. An intuitive prototype based classification scheme results which can divide data characterized by pairwise dissimilarities into priorly given categories. However, the technique relies on the full dissimilarity matrix and, thus, has squared time complexity and linear space complexity. In this contribution, we propose an intuitive linear time and constant space approximation of RGLVQ by means of patch processing. An efficient heuristic which maintains the good classification accuracy and interpretability of RGLVQ results, as demonstrated in three examples from the biomdical domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph quantization

Vector quantization(VQ) is a lossy data compression technique from signal processing, which is restricted to feature vectors and therefore inapplicable for combinatorial structures. This contribution aims at extending VQ to the quantization of graphs in a theoretically principled way in order to overcome practical limitations known in the context of prototype-based clustering of graphs. For thi...

متن کامل

Relational Extensions of Learning Vector Quantization

Prototype based models offer an intuitive interface to given data sets by means of an inspection of the model prototypes. Supervised classification can be achieved by popular techniques such as learning vector quantization (LVQ) and extensions derived from cost functions such as generalized LVQ (GLVQ) and robust soft LVQ (RSLVQ). These methods, however, are restricted to Euclidean vectors and t...

متن کامل

Order Statistics Learning Vector Quantizer [Correspondence] - Image Processing, IEEE Transactions on

In this correspondence, we propose a novel class of learning vector quantizers (LVQ’s) based on multivariate data ordering principles. A special case of the novel LVQ class is the median LVQ, which uses either the marginal median or the vector median as a multivariate estimator of location. The performance of the proposed marginal median LVQ in color image quantization is demonstrated by experi...

متن کامل

Linear Time Relational Prototype Based Learning

Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underl...

متن کامل

Vector Quantization using Grey-based Competitive Learning Network in the MDT Domain

Based on Vector Quantization (VQ), a Grey-based Competitive Learning Network (GCLN) in the Mean value / Difference value Transform (MDT) domain is proposed. In this paper, the grey theory is applied to a two-layer Modify Competitive Learning Network (MCLN) in order to generate optimal solution for VQ. In accordance with the degree of similarity measures between training vectors and codevectors,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012